Friction piles
Foundations provide support for structures, transferring their load to layers of soil or rock that have sufficient bearing capacity and suitable settlement characteristics to support them. Very broadly, foundations can be categorised as shallow foundations or deep foundations.
Pile foundations are a type of deep foundation, formed by long, slender, columnar elements typically made from steel or reinforced concrete, or sometimes timber. A foundation is described as 'piled' when its depth is more than three times its breadth.
Pile foundations are principally used to transfer the loads from superstructures, through weak, compressible strata or water onto stronger, more compact, less compressible and stiffer soil or rock at depth. They are typically used for large structures, and in situations where soil may be subject to excessive settlement.
Friction (or floating) piles develop most of the pile-bearing capacity by shear stresses along the sides of the pile, and are suitable where harder layers are too deep to reach economically. The pile transmits the load to surrounding soil by adhesion or friction between the surface of the pile and soil, which in effect lowers the bulb of pressure. In other words, the whole surface of the pile (cylindrical in shape) works to transfer the forces to the soil.
To gain a better understanding, consider a nail that is driven into a piece of timber. The nail becomes more secure and tightly fastened into the timber, the further in that it is driven. The greater the embedment depth in the ground, the more load the pile can support – the load-bearing capacity of the pile is directly proportionate to its length.
Friction piles are in contrast to end-bearing piles which develop most of their load-bearing capacity at the toe of the pile, bearing on a hard layer of rock or very dense soil and gravel.
For more information see: End-bearing piles.
[edit] Related articles on Designing Buildings
Featured articles and news
Exchange for Change for UK deposit return scheme
The UK Deposit Management Organisation established to deliver Deposit Return Scheme unveils trading name.
A guide to integrating heat pumps
As the Future Homes Standard approaches Future Homes Hub publishes hints and tips for Architects and Architectural Technologists.
BSR as a standalone body; statements, key roles, context
Statements from key figures in key and changing roles.
ECA launches Welsh Election Manifesto
ECA calls on political parties 100 day milestone to the Senedd elections.
Resident engagement as the key to successful retrofits
Retrofit is about people, not just buildings, from early starts to beyond handover.
Plastic, recycling and its symbol
Student competition winning, M.C.Esher inspired Möbius strip design symbolising continuity within a finite entity.
Do you take the lead in a circular construction economy?
Help us develop and expand this wiki as a resource for academia and industry alike.
Warm Homes Plan Workforce Taskforce
Risks of undermining UK’s energy transition due to lack of electrotechnical industry representation, says ECA.
Cost Optimal Domestic Electrification CODE
Modelling retrofits only on costs that directly impact the consumer: upfront cost of equipment, energy costs and maintenance costs.
The Warm Homes Plan details released
What's new and what is not, with industry reactions.
Could AI and VR cause an increase the value of heritage?
The Orange book: 2026 Amendment 4 to BS 7671:2018
ECA welcomes IET and BSI content sign off.
How neural technologies could transform the design future
Enhancing legacy parametric engines, offering novel ways to explore solutions and generate geometry.
Key AI related terms to be aware of
With explanations from the UK government and other bodies.
From QS to further education teacher
Applying real world skills with the next generation.




















